Spectral Projected Gradient Methods: Review and Perspectives
نویسندگان
چکیده
منابع مشابه
Spectral Projected Gradient methods: Review and Perspectives
Over the last two decades, it has been observed that using the gradient vector as a search direction in large-scale optimization may lead to efficient algorithms. The effectiveness relies on choosing the step lengths according to novel ideas that are related to the spectrum of the underlying local Hessian rather than related to the standard decrease in the objective function. A review of these ...
متن کاملSpectral Projected Gradient Methods
The poor practical behavior of (1)-(2) has been known for many years. If the level sets of f resemble long valleys, the sequence {xk} displays a typical zig-zagging trajectory and the speed of convergence is very slow. In the simplest case, in which f is a strictly convex quadratic, the method converges to the solution with a Q-linear rate of convergence whose factor tends to 1 when the conditi...
متن کاملInexact Spectral Projected Gradient Methods on Convex Sets
A new method is introduced for large scale convex constrained optimization. The general model algorithm involves, at each iteration, the approximate minimization of a convex quadratic on the feasible set of the original problem and global convergence is obtained by means of nonmonotone line searches. A specific algorithm, the Inexact Spectral Projected Gradient method (ISPG), is implemented usi...
متن کاملNonmonotone Spectral Projected Gradient Methods on Convex Sets
Nonmonotone projected gradient techniques are considered for the minimization of differentiable functions on closed convex sets. The classical projected gradient schemes are extended to include a nonmonotone steplength strategy that is based on the Grippo-Lampariello-Lucidi nonmonotone line search. In particular, the nonmonotone strategy is combined with the spectral gradient choice of stepleng...
متن کاملSpectral Compressed Sensing via Projected Gradient Descent
Let x ∈ C be a spectrally sparse signal consisting of r complex sinusoids with or without damping. We consider the spectral compressed sensing problem, which is about reconstructing x from its partial revealed entries. By utilizing the low rank structure of the Hankel matrix corresponding to x, we develop a computationally efficient algorithm for this problem. The algorithm starts from an initi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Software
سال: 2014
ISSN: 1548-7660
DOI: 10.18637/jss.v060.i03